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Abstract

In this paper, the natural frequencies and mode shapes of a cracked beam are obtained using the finite
element method. An ‘overall additional flexibility matrix’, instead of the ‘local additional flexibility matrix’,
is added to the flexibility matrix of the corresponding intact beam element to obtain the total flexibility
matrix, and therefore the stiffness matrix. Compared with analytical results, the new stiffness matrix
obtained using the overall additional flexibility matrix can give more accurate natural frequencies than
those resulted from using the local additional flexibility matrix. All the elements in the overall additional
flexibility matrix are computed by 128-point (1D) or ð128� 128Þ-point (2D) Gauss quadrature, and then
further best fitted using the least-squares method. The explicit form best-fitted formulas agree very well with
the numerical integration results, and are very convenient for use and valuable for further reference. In
addition, the authors constructed a shape function that can perfectly satisfy the local flexibility conditions
at the crack locations, which can give more accurate vibration modes.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The cracked beam problem has attracted the attention of many researchers in recent years.
Various kinds of analytical, semi-analytical and numerical methods have been employed to solve
the problem of a cracked beam [1–12]. A common method is to use the finite element method
(FEM). The key problem in using FEM is how to appropriately obtain the stiffness matrix for the
cracked beam element. The most convenient method is to obtain the total flexibility matrix of the
element first and then take inverse of it. The total flexibility matrix of the cracked beam element
includes two parts. The first part is the original flexibility matrix of the intact beam. The second
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part is the additional flexibility matrix due to the existence of the crack, which leads to energy
release and additional deformation of the structure. Papadopoulos and Dimarogonas [1] elegantly
presented the ‘local flexibility matrix’ of a beam due to the existence of the crack by the
integration of stress intensity factors. Their obtained flexibility matrix is indeed a ‘local’ one, as we
can see in their paper that KI2 ¼ KI3 ¼ 0; where P2 and P3 are the shearing forces. The local
flexibility matrix is especially appropriate for the analysis of a cracked beam if one employs an
analytical method by solving the differential equations piecewisely [2]. It is also appropriate to use
a semi-analytical method by using the modified Fourier series [3–5], mechanical impedance
method [6], Rayleigh–Ritz method [7], or transfer matrix method [8]. When FEM is used, to
obtain the stiffness matrix it is necessary to take into account the effect of the distance between the
right hand side end node of the element and the crack location, i.e., Lc (see Figs. 1 and 2). The
reason is that the shearing force P2 also contributes to the opening type (i.e., KI2) of the crack
through the bending moment P2Lc: This problem has been previously ignored in Refs. [9,10], in
which the local flexibility matrix is directly added to the flexibility matrix of the corresponding un-
cracked element to obtain the total flexibility matrix. This is not very accurate because the former
matrix is to describe the local behaviour in the vicinity of the crack region, while the later matrix
describes the overall behaviour of the beam element. In this paper, the authors derived new FEM
formulas to overcome the existing shortcomings by adding an ‘overall additional flexibility
matrix’, which describes the overall behaviour of flexibility due to the presence of the crack, onto
the flexibility matrix of the corresponding intact beam. By comparing the FEM results obtained in
this paper with available existing analytical methods, the new stiffness matrix can indeed give
more accurate results than those obtained from using the local flexibility matrix. Moreover, all the
elements of the overall additional flexibility matrix are computed by 128-point (1D) or 128� 128
(2D) Gauss quadrature and then further best fitted using the least-squares method. The best-fitted
formulas agree very well with the numerical integration results. They are convenient for use and
valuable for further reference.
Once the stiffness matrix of a cracked beam element is successfully obtained by ‘going detour’

(i.e., obtaining the total flexibility matrix first and then taking inverse of it), standard FEM
procedure can be followed, which will lead to a generalized eigenvalue problem and thus the
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natural frequencies can be obtained. However, it is worth noting that it is not appropriate to
compute the vibration modes for the elements having cracks by still using the standard Hermitian
interpolation as in the common FEM method. This problem is seemly ignored by many
researchers when using the ‘detour method’. In this paper, the relationship between the
displacements at the crack locations and those at the two end nodes of a cracked beam element is
derived (see Eq. (65)). The presented shape function in this paper can perfectly satisfy the local
flexibility conditions as well as continuity conditions at the crack locations, which can give more
accurate vibration modes.

2. Stiffness matrix Kc of a cracked beam element

2.1. Elements of the overall additional flexibility matrix Covl

Figs. 1 and 2 show a typical cracked beam element with a rectangular and a circular
cross-section, respectively. The left hand side end node i is assumed fixed, while the right hand
side end node j is subjected to axial force P1; shearing force P2 and bending moment P3:
The corresponding generalized displacements are denoted as d1; d2 and d3: In Figs. 1 and 2, a
denotes the crack depth and Lc denotes the distance between the right hand side end node j

and the crack location. The beam element has length Le; cross-sectional area A and bending
rigidity I :

2.1.1. Rectangular cross-sectional beam

The additional strain energy due to the existence of the crack can be expressed as [11,13]

Pc ¼
Z

Ac

G dA; ð1Þ
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where G is the strain energy release rate function and Ac is the effective cracked area. The strain
energy release rate function G can be expressed as [13]

G ¼
1

E0 ½ðKI1 þ KI2 þ KI3Þ
2 þ K2

II2�; ð2Þ

where E0 ¼ E for plane stress problem, E0 ¼ E=ð1	 m2Þ for plane strain problem; KI1; KI2; KI3

and KII2 are the stress intensity factors due to loads P1; P2 and P3:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tgðps=2Þ
ðps=2Þ

s
0:752þ 2:02s þ 0:37 ð1	 sinðps=2ÞÞ3

cosðps=2Þ
ðs ¼ x=hÞ; ð7Þ

F2ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tgðps=2Þ
ðps=2Þ

s
0:923þ 0:199ð1	 sin ðps=2ÞÞ4

cosðps=2Þ
ðs ¼ x=hÞ; ð8Þ

FII ðsÞ ¼
1:122	 0:561s þ 0:085s2 þ 0:180s3ffiffiffiffiffiffiffiffiffiffiffi

1	 s
p ðs ¼ x=hÞ; ð9Þ

in which x is the crack depth, F1; F2 and FII are the correction factors for stress intensity factors.
It is worth noting that a is the final crack depth while x is the crack depth during the process of
penetrating from zero to the final depth.
Using Paris equation, we have

di ¼
@Pc

@Pi

ði ¼ 1; 2; 3Þ: ð10Þ

By definition, the elements of the overall additional flexibility matrix cij can be expressed as

cij ¼
@di

@Pj

¼
@2Pc

@Pi@Pj

ði; j ¼ 1; 2; 3Þ: ð11Þ

Substituting Eqs. (3)–(6) into Eq. (2), then into Eqs. (1) and (11), and considering that all K ’s are
independent of Z; we obtain
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From Eq. (12), the elements of the overall additional flexibility matrix cij can be obtained. All the
elements cij are further expressed as dimensionless forms as follows (by setting x ¼ x=h):

F ð1; 1Þ ¼ c11E
0b ¼ 2p

Z a=h

0

xF 2
1 ðxÞ dx; ð13Þ

Fð1; 2Þ ¼
c12E

0bh

Lc

¼ 12p
Z a=h

0

xF1ðxÞF2ðxÞ dx; ð14Þ

F ð1; 3Þ ¼ c13E
0bh ¼ F ð1; 2Þ; ð15Þ

F ð2; 2Þ ¼ c22E
0b ¼ 2p

36L2
c

h2

Z a=h

0

xF2
2 ðxÞ dx þ

Z a=h

0

xF2
II ðxÞ dx

" #
; ð16Þ

Fð2; 3Þ ¼
c23E

0bh2

Lc

¼ 72p
Z a=h

0

xF2
2 ðxÞ dx; ð17Þ

F ð3; 3Þ ¼ c33E
0bh2 ¼ F ð2; 3Þ: ð18Þ

Due to symmetry of the matrix Covl and F ; only the upper triangular elements are listed in the
above equations. The computations of Eqs. (13)–(18) are carried out by using 128-point Gauss
quadrature [14]. The computed results are shown in Figs. 3 and 4. Fig. 3 shows the dimensionless
flexibility coefficients F ð1; 1Þ; Fð1; 2Þ ¼ Fð1; 3Þ; F ð2; 3Þ ¼ Fð3; 3Þ as a function of relative crack
depth ða=hÞ: It is worth noting that whilst the coefficients c12 and c23 are linearly dependent on the
value of ðLc=hÞ;F ð1; 2Þ and Fð2; 3Þ are independent of ðLc=hÞ: It can be seen in Fig. 3 that the five
flexibility coefficients increase as the crack depth a increases. Fig. 4 shows the dimensionless
flexibility coefficient F ð2; 2Þ as a function of relative crack depth a=h and for various distances Lc

between the crack location and the beam end. F(2, 2) is explicitly dependent on the value of
ðLc=hÞ: It can be seen from Fig. 4 that as Lc increases, the dimensionless flexibility coefficient
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Fð2; 2Þ increases significantly. In fact, from Eq. (16), one can see that the first part of F ð2; 2Þ
increases quadratically when the value of ðLc=hÞ increases. This is due to the increase in bending
moment P2Lc and hence the additional strain energy. In summary, the coefficients c12 ¼ c21; c22;
and c23 ¼ c32 are affected by the value of ðLc=hÞ while the coefficients c11; c13 ¼ c31 and c33 are not
affected by the value of ðLc=hÞ; among all the elements of F matrix, only the element F ð2; 2Þ is
affected by the value of ðLc=hÞ: The corresponding least squares best-fitted formulas are as
follows:

F ð1; 1ÞE e1=ð1	xÞð	0:326584� 10	5x þ 1:455190x2 	 0:984690x3 þ 4:895396x4

	 6:501832x5 þ 12:792091x6 	 26:723556x7 þ 35:073593x8 	 34:954632x9

þ 9:054062x10Þ ð0px ¼ a=hp0:5; errorp0:009%Þ; ð19Þ

Fð1; 2ÞE e1=ð1	xÞð	0:107478� 10	4x þ 8:730431x2 	 13:806738x3 þ 36:335828x4

	 64:758716x5 þ 102:695857x6 	 171:543812x7 þ 211:600719x8 	 192:273364x9

þ 72:312335x10 ð0px ¼ a=hp0:5; errorp0:005%Þ; ð20Þ

F ð2; 2Þ ¼ e1=ð1	xÞð	0:326018� 10	6x þ 1:454954x2 	 1:455784x3 	 0:421981x4

	 0:279522x5 þ 0:455399x6 	 2:432830x7 þ 5:427219x8 	 6:643057x9

þ 4:466758x10Þ þ ðLc=hÞ2F ð3; 3Þ ð0px ¼ a=hp0:5; errorp0:003%Þ; ð21Þ

Fð3; 3ÞE e1=ð1	xÞð	0:219628� 10	4x þ 52:379034x2 	 130:248317x3 þ 308:442769x4

	 602:445544x5 þ 939:044538x6 	 1310:950293x7 þ 1406:523682x8 	 1067:499820x9

þ 391:536356x10Þ ð0px ¼ a=hp0:5; errorp0:002%Þ ð22Þ

In practice, we are interested in the early detection of cracks, and therefore the above best-fitted
formulas are given with relative crack depth ða=hÞ limited in the scope of 0.5. Fig. 5 compares the
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results of 128-point Gauss integration with those obtained using the present best-fitted formula.
From Fig. 5, it can be seen that the present best-fitted formula agrees perfectly with the Gauss
integration result.

2.1.2. Circular cross-sectional beam
Fig. 2 shows a typical cracked beam element with circular cross-section. The geometrical

dimensions are as follows:

x0 ¼ xþ
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where D is the diameter of the beam. A similar procedure to the rectangular cross-sectional beam
is used to derive the overall additional flexibility matrix for a circular cross-sectional beam. The
additional strain energy due to the existence of the crack can be expressed as

Pc ¼
Z

Ac

G dA ¼
Z bðaÞ

	bðaÞ

Z a0ða;ZÞ

0

G dx0
" #

dZ; ð27Þ
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where G is the strain energy release rate function and Ac is the effective cracked area. The strain
energy release rate function G can be related to the stress intensity factors as in Eq. (2), in which
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where x0 is the crack penetrating depth of the strip. Substituting Eqs. (28)–(31) into Eq. (2), then
into Eqs. (27) and (11) and considering Eqs. (23)–(26), the following expression can be derived:
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From Eq. (32), the elements of the overall additional flexibility matrix cij can be obtained. All the
elements cij are further expressed as dimensionless forms as follows (by setting x ¼ x=D and
y ¼ Z=D):
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where As is the integration area in a unit circle as shown in Fig. 6. The computations of Eqs. (33)–(38)
are carried out by using 128� 128 Gauss quadrature [14]. The computed results are
shown in Figs. 7 and 8. Fig. 7 shows the coefficients of the overall additional flexibility
matrix elements Fð1; 1Þ; F ð1; 2Þ ¼ F ð1; 3Þ; F ð2; 3Þ ¼ F ð3; 3Þ as a function of the relative crack
depth ða=DÞ: Fig. 8 shows the dimensionless flexibility coefficient F ð2; 2Þ as a function of re-
lative crack depth ða=DÞ and for various distances Lc between the crack location and the
beam end. It can be seen from Fig. 7 that the present integration result F ð3; 3Þ agrees very
well with that of Dimarogonas et al. [11]. The corresponding least-squares best-fitted formulas are
as follows:

F ð1; 1ÞE e1ð1	xÞð	0:123234x0:4 þ 3:156480x0:8 	 34:490509x1:2 þ 211:429280x1:6

	 802:944428x2 þ 1964:215885x2:4 	 3092:084441x2:8 þ 3036:531592x3:2

	 1692:594137x3:6 þ 411:505609x4Þ ð0px ¼ a=Dp0:5; errorp1:96%Þ; ð39Þ

F ð1; 2ÞE e1=ð1	xÞð0:0525646x0:4 	 1:694740x0:8 þ 22:910177x1:2 	 171:535649x1:6

þ 789:046673x2 	 2318:500920x2:4 þ 4461:869140x2:8 	 5337:583060x3:2

þ 3599:915932x3:6 	 1044:227437x4Þ ð0px ¼ a=Dp0:5; errorp1:3%Þ; ð40Þ

Fð2; 2ÞE e1=ð1	xÞð	0:0181106x0:4 þ 0:483199x0:8 	 5:519102x1:2 þ 35:485789x1:6

	 141:871055x2 þ 367:853395x2:4 	 610:901666x2:8 þ 639:711620x3:2

	 384:398763x3:6 þ 98:728659x4Þ þ ðLc=DÞ2F ð3; 3Þ

ð0px ¼ a=Dp0:5; errorp1:2%Þ; ð41Þ
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Fig. 8. Dimensionless additional flexibility coefficient F ð2; 2Þ of a circular cross-sectional beam.
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F ð3; 3ÞE e1=ð1	xÞð0:102895x0:4 	 3:653566x0:8 þ 53:161890x1:2 	 423:977411x1:6

þ 2072:129084x2 	 6447:218742x2:4 þ 13613:390334x2:8 	 17873:887075x3:2

þ 12985:643127x3:6 	 3999:171110x4Þ ð0px ¼ a=Dp0:5; errorp0:49%Þ: ð42Þ

2.2. Overall additional flexibility matrix Covl under the conventional FEM co-ordinate system

Fig. 9 shows a typical cracked beam element under the conventional FEM co-ordinate and
notation system. Under the FEM co-ordinate and notation system, the relationship between the
displacement and the forces can be expressed as

uj 	 ui

vj 	 vi 	 Leyi

yj 	 yi

8><
>:

9>=
>; ¼ Covl

Uj

Vj

Yj

8><
>:

9>=
>;; where Covl ¼

c11 	c12 	c13

	c21 c22 c23

	c31 c32 c33

2
64

3
75: ð43; 44Þ

It is worth noting that the local flexibility matrix Cloc can be obtained from the overall flexibility
matrix Covl by setting Lc ¼ 0:

Cloc ¼ Covl jLc¼0: ð45Þ

2.3. Flexibility matrix Cintact of the intact beam element

The flexibility matrix Cintact of the intact beam element can be written as

uj 	 ui

vj 	 vi 	 Leyi

yj 	 yi

8><
>:

9>=
>; ¼ Cintact

Uj

Vj

Yj

8><
>:

9>=
>;; where Cintact ¼

Le

EA
0 0

0
L3

e

3EI

L2
e

2EI

0
L2

e

2EI

Le

EI

2
6666664

3
7777775
: ð46; 47Þ
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Fig. 9. A typical cracked beam element subjected to axial force, shearing force and bending moment (under the

conventional FEM co-ordinate system).
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2.4. Total flexibility matrix Ctot of the cracked beam element

The total flexibility matrix Ctot of the cracked beam element can now be obtained by

Ctot ¼ Cintact þ Covl ¼

Le

EA
þ c11 	c12 	c13

	c21
L3

e

3EI
þ c22

L2
e

2EI
þ c23

	c31
L2

e

2EI
þ c32

Le

EI
þ c33

2
6666664

3
7777775
: ð48Þ

2.5. Stiffness matrix Kc of a cracked beam element

Through the equilibrium conditions, the stiffness matrix Kc of a cracked beam element can be
obtained as follows [9,10]:

Kc ¼ LC	1
tot LT ð49Þ

where

L ¼

	1 0 0

0 	1 0

0 	Le 	1

1 0 0

0 1 0

0 0 1

2
6666666664

3
7777777775
: ð50Þ

3. Interpolation shape function for a cracked beam element

For computing the correct vibration modes of a cracked beam, it is necessary to construct the
interpolation shape function that can satisfy the local flexibility conditions at the crack locations.
Fig. 10 shows a typical cracked beam element and the associated degrees of freedom.
The interpolation shape functions uðxÞ and vðxÞ can be expressed as:

u	ðxÞ ¼ L1ðx; xcÞui þ L2ðx;xcÞu	
c ; 0pxpxc; ð51Þ

uþðxÞ ¼ L1ðx 	 xc;LcÞuþ
c þ L2ðx 	 xc;LcÞuj; xcpxpLe; ð52Þ

v	ðxÞ ¼ H1ðx; xcÞvi þ H2ðx; xcÞyi þ H3ðx; xcÞv	c þ H4ðx; xcÞy
	
c ; 0pxpxc; ð53Þ

vþðxÞ ¼H1ðx 	 xc;LcÞvþc þ H2ðx 	 xc;LcÞy
þ
c þ H3ðx 	 xc;LcÞvj

þ H4ðx 	 xc;LcÞyj; xcpxpLe; ð54Þ

where u	ðxÞ and v	ðxÞ denote the deformation of the beam from the left hand side end node i to
the location of the crack, while uþðxÞ and vþðxÞ denote the deformation of beam from the location
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of the crack to the right hand side end node j: The L’s and H’s are Lagrangian and Hermitian
interpolation base function, respectively, and are given by:

L1ðx;LÞ ¼ 1	
x

L
; L2ðx;LÞ ¼

x

L
; ð55; 56Þ

H1ðx;LÞ ¼ 1	
x

L

" #2 2x

L
þ 1

� �
; H2ðx;LÞ ¼ 1	

x

L

" #2
x; ð57; 58Þ

H3ðx;LÞ ¼
x

L

" #2
	
2x

L
þ 3

� �
; H4ðx;LÞ ¼

x

L

" #2
ðx 	 LÞ: ð59; 60Þ

The local flexibility conditions at the location of the crack can be expressed as

uþc 	 u	
c

vþc 	 v	c

yþc 	 y	c

8><
>:

9>=
>; ¼ Cloc

Uþ
c

Vþ
c

Yþ
c

8><
>:

9>=
>; ¼ Cloc

EA 0 0

0 	EI 0

0 0 EI

2
64

3
75

u0þðxcÞ

v000þðxcÞ

v00þðxcÞ

8><
>:

9>=
>;: ð61Þ

The continuity conditions at the crack location can be expressed as

u0	ðxcÞ ¼ u0
þðxcÞ; v00	ðxcÞ ¼ v00þðxcÞ; v000	ðxcÞ ¼ v000þðxcÞ: ð62264Þ

By grouping Eqs. (61)–(64), we can obtain

dc ¼ A	1Bd; ð65Þ

where

dc ¼ ½u	
c v	c y	c uþc vþc yþc �

T; ð66Þ

d ¼ ½ui vi yi uj vj yj�T; ð67Þ
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Fig. 10. Interpolation shape function for a cracked beam element.
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A ¼

	1 0 0 1þ EAc11
Lc

	 6EIc13
L2

c
	 4EIc13

Lc

0 	1 0 0 1þ 12EIc22
L3

c

6EIc22
L2

c

0 0 	1 	 EAc31
Lc

6EIc33
L2

c
1þ 4EIc33

Lc

1
xc

0 0 1
Lc

0 0

0 	 6
x2c

4
xc

0 6
L2

c

4
Lc

0 	 12
x3c

6
x2c

0 	 12
L3

c
	 6

L2
c

2
6666666666664

3
7777777777775
; ð68Þ

B ¼

0 0 0 EAc11
Lc

	 6EIc13
L2

c

2EIc13
Le

0 0 0 0 12EIc22
L3

c
	 6EIc22

L2
c

0 0 0 	 EAc31
Lc

6EIc33
L2

c
	 2EIc33

Lc

1
xc

0 0 1
Lc

0 0

0 	 6
x2c

	 2
xc

0 6
L2

c
	 2

Lc

0 	 12
x3c

	 6
x2c

0 	 12
L3

c

6
L2

c

2
6666666666664

3
7777777777775
: ð69Þ

It is important to note that the deformation of the beam at the crack location is successfully related to
the deformation of the beam at the two end nodes of the beam element through Eq. (65). It should be
pointed out that all the cij’s in Eqs. (68) and (69) are elements of the local flexibility matrix Cloc:

4. Numerical examples

Example 1. (A cantilevered beam with a crack located at the clamped end). Shifrin et al. [2]
obtained the frequency reductions of a cracked cantilever beam with a crack at the clamped end,
as shown in Fig. 11, by building up and solving the differential vibration equations piecewisely.
Their results can be viewed as accurate except for the error in the root searching process. In this
paper, the finite element results are compared with those obtained by Shifrin et al. in order to
validate the proposed theory. The geometrical properties of the beam are length L ¼ 0:8 m; and
rectangular cross-section of width b ¼ 0:02 m and height h ¼ 0:02 m: The physical properties of
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Fig. 11. A cantilevered beam with a crack at the clamped end.
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the beam are Young’s modulus E ¼ 206 GPa; the Poisson ratio m ¼ 0:3; and density r ¼
7800 kg=m3: The beam is divided into 16 equal elements. In Fig. 12, the results obtained by the
present method are compared with the results from Ref. [2], where oi is the natural frequency of
the cracked beam, o0i is the natural frequency of the corresponding uncracked beam, and oi=o0i

is the frequency reduction. Very good agreement between the two methods can be observed.
Fig. 13 shows the results obtained when the local flexibility matrix Cloc instead of the overall
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Fig. 12. Frequency reduction of a cantilever beam having a single crack at the clamped end.
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Fig. 13. Frequency reduction of a cantilever beam having a single crack at the clamped end.
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additional flexibility matrix Covl is used in the formation process of the total flexibility matrix (see
Eq. (48)). It can be seen that the discrepancies between the FEM and the analytical method are
significant if Cloc is used instead of Covl :
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Fig. 14. A cantilevered beam with two cracks while the location of the second crack is variable.
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Fig. 16. A simply supported shaft with a crack.
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Example 2. (A cantilevered beam with two cracks). Fig. 14 shows a cantilevered beam with two
cracks. The beam has the same geometrical and physical parameters as those given in Example 1.
The first crack is at a fixed location of xc1 ¼ 0:12 m and has a depth a1 ¼ 2 mm: The location of
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Fig. 17. (a) First vibration mode of a simply supported shaft with a crack located at xc ¼ 0:5 m ð f1 ¼
55:92 Hz; f1=f01 ¼ 0:9237Þ: (b) Second vibration mode of a simply supported shaft with a crack located at xc ¼
0:5 m ð f2 ¼ 242:18 Hz; f2=f02 ¼ 0:9999Þ: (c) Third vibration mode of a simply supported shaft with a crack located at

xc ¼ 0:5 m ð f3 ¼ 506:85 Hz; f3=f03 ¼ 0:9301Þ:
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the second crack varies from the left end to the right end of the beam, with a fixed depth of
a2 ¼ 2 mm: Both the results obtained by the present method and those from Ref. [2] are shown in
Fig. 15. Good agreements are again observed.

Example 3. (Vibration mode of a cracked simply supported shaft). Fig. 16 shows a simply supported
beam with a crack. The geometrical and physical properties of the shaft are length L ¼ 1:0 m;
diameter D ¼ 0:03 m; Young’s modulus E ¼ 206 GPa; density r ¼ 7800 kg=m3 and the Poisson
ratio m ¼ 0:3: The crack is assumed to be at the centre of the beam and has a depth 0:015 m: The
shaft was divided into 20 elements. Figs. 17(a)–(c) show the first three vibration modes of the
cracked simply supported shaft for the natural frequencies of f1 ¼ 55:92 Hz ð f1=f01 ¼ 0:9237Þ; f2 ¼
242:18 Hz ð f2=f02 ¼ 0:9999Þ and f3 ¼ 506:85 Hz ð f3=f03 ¼ 0:9301Þ; respectively. It can be seen
from Figs. 17(a) and (c) that the first and third order vibration modes are significantly different from
those of un-cracked shaft, while the second order vibration mode (Fig. 17(b)) has almost no change.
This is because the crack location is at the point where the second mode bending moment is zero,
that is, M2ðxÞx¼L=2 ¼ 0: These results demonstrate again that the bending moment and opening type
of the crack dominate the behaviour of a cracked beam.

5. Conclusions

In this paper, the overall additional flexibility matrix instead of the local additional flexibility
matrix is used to obtain the total flexibility matrix of a cracked beam. The stiffness matrix is then
obtained from the total flexibility matrix. As a result, more accurate natural frequencies of a
cracked beam are obtained. All the elements of the overall additional flexibility matrix have been
computed by using 128-point (1D) or 128� 128-point (2D) Gauss quadrature, and then best fitted
using the least-squares method. A new shape interpolation function has been successfully
developed to compute the vibrational modes of a cracked beam, which can perfectly satisfy the
local flexibility conditions at the crack locations.
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